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Section A:

Pure Mathematics

The first result can be obtained by applying a compound angle formula to
tan((é’l + 8, ) + (93 + 8, )) and then repeating the application to each of
taﬂ(é’E + 6)2) and tan(é)3 + 6?4)where they appear. On simplification, this
gives

Loty wh 4t~ L, — it =t b, = T
tanlf, + 6, +6, +6, )= it 234 341 503 123
(‘ P 4) L= t,ty =0ty = t,L, — yly = 1yt — b1, + 11,10,

As t,, etc are the roots of the equation ar* + bt +et® +dt +e =0, then
at' +b8° +of’ +di+e= a(x —1 )(t ~t, )(t —t,){1 -1, ), which yields, from
expansion and comparison of coefficients, the four results
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These substituted in the first result lead to ‘fan(ﬁ1 + &, +6, + 94) = e
a-c+e

Applying double and compound angle formulae to
peos2d +cos(:9 — ) + p = 0 gives the equation

2pcos’ 9 +cosdcosa +sindsina = O, which can be rearranged as

-2
cosa + tan Ssin o = ——
secd
o | oA
Squaring this and replacing tan$ by ¢, (cosa + tsine)® = o

Rearranging this obtains the quartic equation

tisin® o+ sin2¢ + 12 —!—tsin20¢+(¢os2 O:—4p2) =0, and so, from the
0
second result tan(é’l +6, +06, + 6?4) =TT 0, and thus
—ap

& +0,+0,+6, =nm.



2. (@)

135 (20 —1) = o2 (2n)! _ L (n)

2468...2n 21222324..2.n 2"1234...n 27n!

1
Using the binomial theorem, which is valid given the condition x| <—,

22 )

(1—4x)“21 —1+-»( 4x) + -2

21
1.3 1357..2n -1
= 14120+ (20) 4t ( i )(2x)”+...
So the first result of the question yields (1 —4x) = Z leading to the
required expression.
(i)  Differentiating (1 -~4x = Z ( !) with respect to x, and
n
2 2n)! 6 1
multiplying the result by x gives z - = s (2n)tx” and substitutingx = - < —,
(1—4x): = nin—1)! 25 4
gives the desired result.
T > {2n)tx"
(iii)  Integrating (1—4x) =1+ Z( n)i);c with respect to x, gives
n=l ux
> Zn)?x”“ 1 -1
(l —4x) =X+ 2 e i + ¢, and substitutingx = 0 < T gives ¢ = TR
. 2 2 1 TP .
Now substituting x = Py < 7 and simplifying, gives the desired result.

3. (F,=2F =3,F, =5F =8 F =13,F, =21
(i1) The result requires no term beyond F,,,, should appear on the RHS so the
first strategy is to replace F;, , and hence

2 2 - 2
FriwsFopn = Fod = (Fzmz + F;ku)Fz:m —Fa = (szn - Fékn)ﬁémz Ly =B
as required.
(iii) The initial case is trivial to demonstrate, and so the induction runs from
assuming that r,, ,F,, , - F,? =1, and attempting to prove that
F F - F e

2k+D+t T 20k 2k+1)

F2§k+i)+}F2{k+i}—l - Fz(k+'=)2 = sz+3sz+1 - F2k+22 = “sz sz-n + Fz}mz fI’Dm (”)
= (= Fyy ,F,,,, +F,) by a similar argument to (ii) = —(- 1) by inductive hypothesis.

+ F

2k+1



The deduction follows from adding F,,*to both sides of the result just proved.

(iv} This result cannot be deduced directly from (iii) as the nature of the
expression differs in the type of subscript. Thus consider

}??.nwlz + 1 = (F?.n-H _]:2n)2 + I = I ? _ZF‘ZJ:H n + ﬁ;nz + }' = F'Znﬂz _‘?’F

2i+1 2n+1

from (iii) and hence the desired result is obtained.

FYEH + F;.n—EF

2n+l

4,

y=asint = y = acos!

P
! ] ESGC E
x=a(cost+lntan—2-]:>x=a msint+—-——t—~ = a{—sint + cosect) = acost cot

tan -
2

giving ;%’- = tanf .
x

(v intercept a, y axis tangential to curve, x axis asymptote)

{ t
Tangent is y —agsin/ = tan f(x - a[cost +Intan 5)) giving Q as {a Intan > ,O) and

thus PQ = \/((arcosf)2 +(asint)2) =a

y =acost = y = —asin{

x =al~sint +cosect) = x = a{~ cost — cosect cot £)

;4—; = (acostcotf)’ +{acost)’ = a’cot?t

xy— yx = g CcOSICOtt X~ 8Nt —~ @cost x a(— cost — cosecrcott)

= az(—m cos® 1 +cos® f +cot? I) =a’ cot2 f

giving p=acott.



d
From the results for ?‘é—and p,Cis

H . , H
[a(cost +In tana} —psint,asint + pcosf} = (a In tan-z-,a cosect)

Which has the same x coordinate as Q.

1
5. %mx(xz —1)7 =cosh &

y=lnr’ =2Inr
ﬁ’}i 2dr 2coshé@

R S i
o R0 and r = hé
g = ~cosec and r = cosechd,
So differentiating the previous result and substituting,
) de dr
dry 2rsinh0 - =2coshf 0 o(cosechOsinh @ x —sinh? O—coshfcoshd)  2cosh26
et 2 - p2 = pe:
Similarly,
de d
gy 2r72sinh20 " ~2cosh20x 2 A
=" X = L F(sinh29+cosb26’coth@) =~ cosh30
In order to hypothesise a result for o the important thing is to appreciate that the 4
has come from 2 times exponent of » and multiple of 4.
d”y n—1 (n—i)! . . .
So =2 (~1) ~>coshn@ which may be proved by induction, the
e
inductive differentiation step following the same pattern of working as used for a7y
X
d’y
d—=.
and—-5

6.  po=q¢ =a’
and 50 az(p - q) =gq p-pp'g= ——pq(p* - q*) and hence the required result.
If PQ and RS are perpendicular then p—q = ki{r — 5) for some real &, and thus

* * ® ® - r—28
P —q z—k:‘(r -s),andso pg=-a’ ’? g*=a2

% o= —-pS
~q ro-s
For n =23, BB,14 4,etc. = a,a, +bb, =0etc.
bb, xbb, —aua,x-aa
Thus 5, = ——2—-% = 12 2 = —g,and 50 b, = g,
b,b, —d,d,

i.e. two choices of B,|.



Forn=4, B B,14 4,etc. = a,a, +bb, = Octc. but this only yields 3 independent

equations as e.g. aa, +b,b, = 0can be obtained from the other three equations by
a,d, X ad,a, ot ; :

a,a, = T etc. Hence there are arbitrarily many possible choices for B,.

For n > 4, the corresponding results are as for n = 3 or » = 4 depending on whether n

is odd or even.

3
du ool |
=y~ st 2 = — -2 foved
7 0] U=y =TV o tH{x) i}w‘_v_z x —v 2 dv ]j.vz +}.a'v
i )
1) ol T o 1
f—]+Hx) = d = du ==
50 (x +ilx) Jl+u2 ”+Jvl+1dv 5{1+u2 “ERP
Letting x = 1 gives the desired result.
" L Y
(i) y= ==
1+’ 1-y*
-1
du 1- V2 % —yl] = AT 1— 2 2
50 T = ( Y ) 2 Zy( 2 ) = ( 4 ) 3}} and hence the result.
dy 1-y (1-52)?
Using the given substitution for u,

-] —! IV S B (]
X} = X 3 Y = T Y =4 >
Dl (ot ey e
-y
Again letting x = I, and using the result from part (i) gives the desired result.

I
1+—F2z
V3

1
Letting x = :7—; gives the required result.




i
e
By definition t( J f - 5-du , by the previous result just obtained
M
4

ol

V3
t(i) j - dz , and from part (i) r( ) j - dv and so adding these three
1

NE) 1+ 2%
NG
, 1y %1 1
results gives 3!(7?;;) = J—l—;—u—z—du =3P
8. (i) Substituting each u into the differential equation yields simultaneous

equations a{x)+ xb(x) = 0 and e (1 - afx) + b(x)} = 0 which solve to give

x
alx) = ix and b(x) = Tx

The general solution is u = Ax + Be

- X

I d dy ~1{(d 1 d%u
- - 302 ( u) —— which when substituted into equation (*),
U

T ude dv ac) 3y ax

multiplied by 3u, and collected on one side gives the required result,

i du » A-Be™”
u=Ax+Be7 = —=4-Be = y=—p——r
dx 3(Ax + Be ™)
[—e™
and substitution of x =0,y = 0gives A= B and hence y =——~—f~——:—m.
3(x+e J‘)

1 du
(ity  Substituting y = e into the given equation yields

d2u+ X _c_fg 1
dx?  l-xdx 1-x
x replaced by —x

= 0 which is the equation in the first part with

So the general solution is # = Cx + De”*
I+e¢”
x+e”

Substitution of x =0,y =2 again gives 4 = 5, and hence y =

Section B: Mechznics

9. Conservation of energy leads to the equation
1 . 2 2
2{“2” m(a 6’) }r mkia*(8-a) = mkzaz(ﬂ— 0:)2 which, when simplified, and

working in the variable (¢ — &) rather than & can be rearranged as

(60— ) k\/ —(9 a)’ ) .
Separating the variables and performing the standard integral yields
d-a= (,8— fx) sin(kt + ¢) (it does not matter that (ﬁ— cz) <0).




The initial position from which the system is released gives ¢ = g— and so
0= c +(,8-0:)coskt :

. 7 . b/
The three possibilities that can arise are that §=0,6 < 7 that #=0,8= 5 or that

: T
G =
& >0, >

2 T
The first of these is SHM and has period —},;—, which occurs if o (ﬁ - cx) < —-Zm
.. 4
te. if g> 205—5.
For the second case, oscillations do not occur. Then,

0 =0=>sink = 0=>cosks = ~1 (not cosks =1 as this is the initial position) and so
w Fis

—ma-{f-a) e f=20-—.

S =a (ﬂ (x) ie. =2« >

Fia
The third case is partially SHM until &= 3 and then the motion is reflected.

T
So a quarter of the period is given by T=a + (ﬁ — a) coskf and hence the period is

4 5T _ ) 7
~cos ™! which occurs if S <2a — 5

k B-a

10.  Using uniform acceleration formulae with (x,y) = (— gsin ¢,——gcos¢) , then

1 1
(x,y)=(Vtcos€—§gtzsin¢,Vtsin t9—~~2‘gtzcos¢].
Veos@  2Vsind
gsing  gcosd

To return on the same path x =0 when y=0. S0 t=

i.e.2tangtand = 1
Also using v’ = u? +2as in the x direction 0=V ? cos’ § - 2gRsing

V?cos® 6
ie. R:m2gsin¢
Thus
2)* i 5 ) 5 ) i ) 1 s
R = 4singsec 6’=4sm¢$(1+tan 6‘)=4sm¢(1+zcot ¢jm4sm¢(l+z(cosec ¢—1))

= 3sin ¢ + cosecd
1 I
Consider y = 3x + L > 0. By differentiation, this is least for x = M\/? )

2 2
=4 is 2/3, and the largest value of R is 4 .
gR 3g

Thus the least value of



If the angle between mg and N is &, then conserving energy and either differentiating
the energy equation or taking moments about the point of contact yields

i 1 2 .
Emuz +mga = Emaz 8 +mgacosf and 0=l gsind

Resolving in the opposite direction to F, mgsin@— F = ma @ and so, from the second
equation above, F =0,
2
Resolving in the opposite direction to N, mgcos@ — N = ma @ ,
2
and losing contact N =0,s0a8 = gcosd.

Thus from the energy equation u° +2ag = 3agcos@ and so the hub has fallen

u'+2ag ag-u’

> (), but is less than a.
3g 3g

a—acosf=a-—

(i)

m 2 om . )
—2—(251) a +_2—g(2a)0059 and 0=2a6~- gsind ,

B | e

1 m 2 M
ore —— (2u)’ +2 g(2a) =
As before 5 2( u)’ + 5 2(2a)

fa—

and mgsin@—Fz—;—z(Za)é’ so F =-2-mgsin(9.
L2 2
Also mgcosf—N = "’5"(211)9 and so when contact is lost N = 0,50 a8 = gcosé ,

u’ +ag = 2agcosf,
u' +ag  ag—u’

2g 2g

and the hub has fallen o — a. cosfd=q -~ > 0, but is less than a.



Sowhen N =0, uN =0, F >0, but we require F < 4N not to slip, and hence
slipping will certainly oceur before it loses contact with the table,

Section C:  Probability and Statistics

12,
= 1 (2n-1)2n
E(N)‘:g;zn_l‘“znml 2 7
E(NZ)_Z”i 1, 1 (2n—1)2n(4nw1):n(4n—1)

T &on 1 T 6 3

N 1 1 1
E(Y)= E[Z X,) =5 E(X,)+ T E(X, + X, )= o (4042004 3. 420 = 1))

1 y(Zn—E)2n_n£
C 2n-1 2 B

n{4n—1)
3

I
x1x pu+ X 2 x 24+, x(2n-Dx(2n-Dyu=

T on-1 2n—1 -1

E(YN)

nl4n —1) 1

and so Cov(Y,N) = 3 y—n2y=~§n(nml)y

E(x7)=var(x,)+(E(x,)) = 0% + 4’

Also (X, + X, 40X, ) =2 X7 423 X, X, , and so
=1

i

E((X, + X, e, +X,,)2) =r{c? +#2)+2f_(£2__1_)m‘u2

Thus

E(y?) = 2;:— 1 zj?z:(r(o—l +g2)+21’§’5’—9#2} = {o? + 1)+ n(4r;v- 1)#2 o =na?t n(4r;— ),
and so Var(Y) = no? +mﬂ2 -’ = no’ +i”_“_1)~/u2

3

13, (i) p,(2)is the probability of landing in the pool for the first time on the 2™
jump starting 1.5m away which is the probability that the first jump is Im which is p.
(ii) u, =1
p=qgand p,(2)=p sou, =qg+2p=1+p=2-g
P =0, p(2)=1-p" =q(1+ p)=2¢—¢*, and p,(3)=p* =1-2g+¢" s0
w, =2(2g-¢*)+31~2¢+¢*) =32+ ¢°
(iii} Using the values u, =1, w, =2 —g, and u, =3~ 2¢g +¢”, we obtain three
equations:-
A+B+C=1 (1)
~Ag+ B+2C=2—-¢g 2



Ag* +B+3C=3-29+q¢" (3)

It makes sense to consider (3) ~(2) and (2) ~(1) to eliminate B and then subtract the
resulting equations to eliminate C, and hence we find that

(3)“2(2)+(1):>141(q2+2q+1)rq2 ﬁAm[“EW] ,

g+1
substituting in (2)—(1):(;%?)2(—47-1%0; E—q::>C=-l:1; , and s0
B:@ff

) - |
%0t :{5—%) (Wq)”ul"}m(qfi)2 +1jqn: gj)l)2 +(q~+~])6;+2q)+}7‘:29n

For large n, the first term approaches zero, and the second term is negligible in

comparison with the third for ? " <l<<n

g+
I
p+2q"
The expected distance covered in one jump is ¢ +2 p and as jumps are of integer

Hence u, =

I :
length, to get to the pool from a distance [n - Ejm needs a distance n metres to be

|
p+2qn'

Jjumped and so the expected number of jumps would be

4. () If W is the area of the smallest circle with centre O that encloses the
hole made by a single dart throw then the p.d.f. of W is given by

I
— 0w
T

flw) =

0, otherwise

[f X is the area of the smallest circle with centre O that encloses all the » holes made
then

=y nr
—dy =,
7

-l o g
ax
P(x<X<xwi~50c)=n[-)~C~) — and so E(X):jxxn(ij
7 T : Fis
On the other hand, if ¥ is the area of the smallest circle with centre O that encloses all

-2 R
the (n—1) holes nearest to O then P{x <Y < x+ &) =n{n- })(_x_) (1 - —{] & and
T n)om

so E(Y)= zfx x n{n — I)[(—i—) " - (_7)9 MJ W;de :W

0

(ity  If Zis the area of the smallest square with centre O that encloses all the # holes
made then, in similar manner to (1)

XY y N\ 4n
Plx<Z<x+ &)= n(m) s and so E(Z) = j'x X n(z) =X =
&

4 4 n+l



(iii)  If we knew that the dart landed inside the circle of radius 1 centre Q when it
hit the square dartboard, then the answer would be that we obtained for the circular
board. But there is a non-zero probability that the dart could land in larger circles if it
fell on the board outside the circle of radius I and hence the expected area of the
smatilest circle for the square dartboard is larger than that for the circular board.

Algebraically, if S is the expected area of such a circle if the dart falls outside the
circle on the square board, and E(X) is as in part (i),

7
the expected area = [%9 E(X)+ (1 - ZJS , where S > E(X), and so this is

[s —(1 —%DE(X) +(1 wg—)s _ E(X)+(E —9(8~ E(X))> E(X)

2
N




